

Blessing of Run II Diffractive Results

- ✓ Introduction
- ✓ Data Selection
- ✓ Plots for Blessing

Forward Physics

- Hard Single Diffraction
- Double Pomeron Exchange
- •

Diffractive Dijets

- Compare diffractive events to ND
- Measure diffractive structure function from R_{SD/ND} vs x bi

Measure ξ (pbar momentum loss fraction) from calorimeter information

x: Momentum Loss Fraction

Measure fractional momentum loss of anti-proton

Diffractive events are boosted towards positive h

 \Rightarrow small x

Trigger

- RP is triggered on leading antiprotons
- Use RP + jet triggers

Data Sample

- Use dedicated diffractive triggers
 - > RP+J5 (diffractive sample)
 - > J5 (control sample)
- Data sample ~9 pb⁻¹
 (PHYSICS_1_03_v1)

Event Selection

1.	Triggered events	352,359
2.	MET Significance<6	352,359
3.	Two jets ($E_T>5$, $ h <2.5$)	175,292
4.	RP coincidence	168,153
5.	SD (0.02< x<0.1)	15,209
6.	All BSC East Gap	1,126

Question #4

Q: What is the ratio SD/ND for $E_T > 10 \text{ GeV}$?

DSF with Jet E_T cut

Q² Dependence

Answer to Q#4

Q: What is the ratio SD/ND for $E_T > 10 \text{ GeV}$?

A: Slope and normalization change by ~ 1%.

Plots For Blessing

Suggested modifications have been implemented

x Distribution

Rapidity

⇒ Diffractive dijets are boosted away from the recoil antiproton

Mean Dijet E_T

Df (jet₁-jet₂)

⇒ Diffractive dijets are more back to back

MP Multiplicity

Diffractive Structure Function

Diffractive Structure Function (II)

East Multiplicity: BSC vs

DPE Enhanced Sample

- Study a dedicated DPE trigger (RP+J5+GapE)
- ~300 k events
- E_T(jet_{1,2})>5 GeV
- |h(jet_{1,2(,3)})|< 2.5
- (0,0) bin ⇒ ~ 16,000 events (in Run I: 100 evts)

Df (jet₁-jet₂)

Dijet Mean Rapidity

Jet Transverse Energy

Conclusions

Relax, it is only physics.

Question # 1

Q: Is the BG peak at $x \sim 1$ due to overlap events from multiple interactions?

x Distribution

Luminosity Dependence

Luminosity: 1.0 E31 1.5 E31 2.3 E31

Overlap Rate

 \Rightarrow R (ND/SD) = 12 n e ⁿ

Multiple Interactions Shift ND Peak

Run I vs Run II

Run I Run II

L um / bunch 0.16E30 / 6 20.0E30 / 36

 s^{ND}/s^{SD} 300 (lower jet E_T) 600

R (Run I/Run II) = 1/60

R (Run II) = 10 \Rightarrow R (Run I) = 0.15

Multiple Interactions

Answer to Q#1

Q: Is the BG peak at $x \sim 1$ due to overlap events from multiple interactions?

A: Yes.

- 1. Ratio is consistent with Run I numbers and Run II expectations.
- 2. Peak at x ~ 1 shifts according to luminosity, as expected.

Question #2

Q: What is the effect of the MP energy scale calibration?

MP Calibration

- Use slope from ADC distribution
- Tower-to-tower relative calibration with data/MC
- Energy scale from MC
- MC/MBR

- ✓ Pile-up at high luminosity
- √ (Slope-Fit)/Fit ~7% for each h ring
- ✓ Time dependence (LED)

MP Multiplicity

MP Contribution to x_{ND}

Effect of MP Energy Scale

Answer to Q#2

Q: What is the effect of the MP energy scale calibration?

A : An energy scale variation of +/- 25% yields Dlog x = +/- 0.1.

- 1. Dlog x=0.1 is the bin width of our x distribution.
- 2. Peak position in data is centered where expected, indicating the energy scale uncertainty is < 25%.

Question #3

Q: What is the background in the RP inclusive rate?

RP Inclusive Data

Zero Crossings

Answer to Q#3

Q: What is the background in the RP inclusive rate?

A: It is 1-2% of all RP triggers, concentrated at $\log x < -3$